
Dynamically Generated Metadata and Replanning by 
Interleaving Workflow Generation and Execution  

Yolanda Gil and Varun Ratnakar  
Information Sciences Institute 

University of Southern California 
gil@isi.edu, varunr@isi.edu 

 
 

Abstract—Workflow engines typically plan an entire 
workflow and then submit it for execution, and have limited 
replanning capabilities when the workflow execution fails. This 
paper presents an approach for interleaving planning and 
execution. The approach supports the incremental submission of 
partial workflows for execution until completion. As new 
metadata is generated dynamically during execution for all new 
data products, the workflow system can incorporate that 
dynamically generated metadata in the workflow planning 
process. The approach also supports replanning in case a 
resource is no longer available and in case of failure, not just by 
reassigning resources but also by redesigning the plan by 
replacing components that may fail to execute. The aproach is 
implemented and integrated with the WINGS workflow system, 
and is being used for a medical application. 

Keywords—Scientific workflows, distributed workflow 
execution, scientific metadata generation, dynamic workflow 
replanning, interleaving workflow generation and execution. 

I. INTRODUCTION 
A variety of workflow systems have been developed to 

manage complex scientific computations [Taylor et al 2007].  
An important area of research has been to allow users to 
specify workflow computations in a manner that is independent 
from the execution environment, where the workflow system 
automatically maps the codes to whatever execution resources 
are available at run time.  This can be seen as managing a 
separation between the physical layer and the logical layer of 
the computation. A workflow specification at the logical layer 
has a specification of the codes to be executed, and there is no 
mention of the actual resources where the execution will take 
place. A workflow specification at the physical layer does 
mention execution resources that are to be used to run the 
computations.  This separation between the logical and the 
physical layers is also common in web services frameworks 
and has been adopted in some workflow systems.  A workflow 
specification at the logical layer is sometimes called an 
“abstract workflow”.  Workflow systems automatically map 
the workflow specification at the logical layer to a workflow 
specification at the physical layer.  This is an important benefit, 
as it enables users to run their workflow in different execution 
environments, bringing flexibility to their applications. 

However, workflow representations are still very tied to the 
execution environment because they specify the application 
codes that are to be run at each step. For example, depending 
on the workflow system a step may specify the MATLAB 
routine or Java code to run, or the signature of the service that 
needs to be invoked.  In this respect, workflows are still tied to 
particular application codes and software environments. When 
published in workflow repositories [De Roure et al 2009], this 
limits their reuse by others who may use different software.  It 
also limits their validity over time when code becomes obsolete 
and no longer runs.  Ideally, workflow specifications would be 
independent of the particular code and software environment, 
specifying only the domain task to be carried out rather than 
what application codes to run.  Previous work has focused on 
interoperability of workflow systems and workflow 
representations [Kozlovszky et al 2012], but not on creating 
more abstract representations that address the domain layer. 

We have developed an approach to represent semantic 
workflows that express domain tasks rather than the application 
codes that implement those tasks. We have implemented this 
approach in the WINGS semantic workflow system [Gil et al 
2011a; Gil et al 2011b; Gil 2014], and extended WINGS to 
demonstrate the mapping of semantic workflows into 
alternative workflow execution engines, including 
Pegasus/Condor and Apache OODT, and how to generate 
alternative workflow candidates when many alternative 
implementations of workflow steps are possible [Gil 2013a; 
Gil 2013b]. 

In this paper, we present an approach for interleaving 
workflow generation and execution that take advantage of the 
ability of WINGS to represent workflows of domain tasks.  
This approach enables a workflow system to take into account 
metadata that is dynamically generated by the worfklow and 
adjust the workflow accordingly.  It also enables users to 
change the resource availability even during execution, and the 
workflow is adjusted accordingly.  The approach supports the 
incremental submission of partial workflows for execution 
until completion. As new metadata is generated dynamically 
during execution for all new data products, the workflow 
system can incorporate that dynamically generated metadata in 
the workflow planning process. The approach also supports 
replanning in case a resource is no longer available and in case 
of failure, not just by reassigning resources but also by 

 

We gratefully acknowledge support from the US Air Force Office of 
Scientific Research (AFOSR) with grant number FA9550-11-1-0104 and the 
US National Science Foundation under grant number ICER-1440323. 

Proceedings of the Tenth IEEE International Conference on Semantic Computing, Irvine, CA, February 3-5, 2016. 



redesigning the plan by replacing components that may fail to 
execute. The approach is implemented in the WINGS 
workflow system, and is being used for a medical application.  
In this application the metadata of the intermediate results of 
the workflow is used to select data sources in some of the steps 
of the workflow, as described in [Zheng et al 2015]. 

II. OVERVIEW OF THE WINGS WORKFLOW SYSTEM 
The WINGS workflow system is an end-to-end workflow 

system, which spans the timeline of a workflow from 
describing high-level workflow templates to creating concrete 
instantiations of these workflow templates, to executing these 
workflow instantiations in a diversity of execution 
environments, tracking the execution provenance, and finally 
supporting workflow reuse. WINGS aims to provide a user-
friendly and standards-based tool to allow reusability, 
repeatability and modularity in conducting computational 
experiments via a workflow system.  This section gives a brief 
overview of WINGS, more details can be found in [Gil et al 
2011a; Gil et al 2011b; Gil et al 2009; Gil 2014].   

The WINGS workflow system builds on semantic web 
technologies and provides RDF serializations of templates, 
component descriptions, data descriptions, executions, and 
provenance information. The RDF graphs are stored in a Jena 
TDB triple store, and an RDF endpoint is available for 
authenticated users to query the store.  

WINGS includes a Data Catalog, a Component Catalog and 
a Workflow Catalog. WINGS data types and data are exposed 
via the Data Catalog, which provides an API to add new data 
types and data, or to edit existing data types and data. The data 
types are organized hierarchically, and each data type can be 
associated with some user defined metadata properties. Data 
can be uploaded under a particular data type, and its metadata 
property values can be filled in. 

 WINGS components are accessible via the Component 
Catalog, which provides an API to add new components and 
component types, or to edit existing components and 
component types. Component inputs and outputs (IO) can be 
defined to have certain data types already defined in the Data 
Catalog. A component type (or an abstract component class) 
provides the skeletal IO for that category of components, 
whereas a concrete component could expand on or specialize 
the skeletal IO of its component type. A concrete component 
would also contain a code implementation of that component 
type. This implementation could be binary code or a script that 
can be run on the host machines. Components and component 
types can also include semantic constraints that are 
implemented as rules.  This distinction is illustrated in Figure 
1.  In order for WINGS to be able to run the code 
implementation of a component, it generally needs to wrap the 
code in a “run” script.  This script is a  shell/batch script, which 
follows a basic pattern as specified by WINGS; it parses the 
input file paths to the script as specified by the component 
description, sends them to the code appropriately, and makes 
sure that the outputs are moved to the output file paths sent to 
the run script by WINGS. 

Classifier Modeler 

DecisionTree-Classifier DecisionTree-Modeler 

J48-Classifier J48-Modeler ID3-Modeler ID3-Classifier 

J48-Modeler-Java J48-Classifier-Java ID3-Classifier-Weka J48-Modeler-Weka 

Abstract Software Component Classes 

Executable Codes for Workflow Components  
Fig 1. Abstract software component classes, shown at the top, can 
be used to specify a step in a workflow.  The workflow generation 
algorithm selects executable codes, shown at the bottom, for those 
workflow components before submitting the workflow for 
execution. 

                            ! 
Fig 2. A workflow with abstract software component classes for its 
two steps. 

 Workflow templates in WINGS are stored in the Workflow 
Catalog.  Workflows are represented as graphs of nodes and 
links which both have variables associated with them. Links 
can be input, output, or in-out links. Links contain data or 
parameter variables and may connect two nodes (in-out) or just 
end or originate at a single node (input or output link).  Data 
variables could be bound to any data from the data catalog, 
whereas parameter variables could be bound to a basic data-
type value (like string, integer, etc). Nodes in the workflow 
graph contain component variables, which can be bound to any 
component or component type from the Component Catalog.  

Figure 2 shows an example of a workflow where the steps 
are component types that need to be specialized into executable 
codes during workflow generation. 

III. DYNAMICALLY GENERATED METADATA 
An important capability that can be accomplished by 

interleaving workflow generation and execution is the ability to 
have the metadata that is dynamically generated during 
execution shape how the rest of the workflow is created.  For 
example, the first few steps of the workflow may do a lot of 
filtering on a dataset, and once the filtering is executed we can 



have specific metadata (e.g., the size of the file) affect what 
algorithms are selected in the latter part of the workflow. 

We achieve this capability in WINGS by 1) modifying 
components to generate metadata during execution and store it 
in specific metadata files, and 2) adding breakpoints in the 
workflow. 

A. Met Files: Dynamic Metadata Generation 
A component can be written to dynamically generate metadata 
during execution for any of of its data products.  The metadata 
is included in a metadata file named with a “.met” extension, as 
in [output-file].met.  The file consists of multiple lines of 
[property]=[value] pairs, such as: 

hasSize=12592 
numberOfLines=130 
 

Plain property names are used instead of URIs in order to 
make things simpler for component developers, and also to 
allow portability of components and workflows while moving 
from one domain/user/system to another. 

These metadata files are hidden from end users.  In 
WINGS, they do not appear in the user interface. 

B. Breakpoint Variables: Controlling Execution to Fetch 
Dynamically Generated Metadata 

Execution can be paused by marking a data variable in a 
workflow as a breakpoint to indicate that dynamically 
generated metadata should be fetched at that point before 
proceeding. A workflow can have several breakpoints can be 
specified for any given wokflow. 

When the workflow execution algorithm reaches a 
breakpoint, the execution is suspended.  The entire workflow, 
both the originally planned workflow and the ongoing 
workflow execution state are captured.  Workflow generation 
is re-invoked.  The workflow generation algorithm checks if a 
met file exists for the data binding of the breakpoint variable. 
If a met file does not exist, then the algorithm creates a 
truncated workflow to submit to for execution that has all the 
nodes up to this breakpoint as well as breakpoints in other 
branches.  The truncated workflow will then be executed, at 
which point the met file will be generated.  The workflow will 
then be sent back to workflow generation.  When a met file 
exists, the dynamically generated metadata from the met file 
overrides predicted metadata for that data binding. This allows 
the system to communicate dynamically generated metadata 
during execution to the workflow generation process.  
 To support this, we extended the workflow ontology with 
the property “breakPoint”, which can be added to any 
workflow data variable.  For example: 

Output1 
  a wflow:DataVariable ; 
  wflow:breakPoint true . 

 
Figure 3 illustrates how this process is set up by the user in 

WINGS.  Figure 3(a) shows how a variable can be marked as 
a breakpoint from the user interface to the workflow system.  
Figure 3(b)  shows the  initial truncated  workflow  up to the  

 
(a) 

 
(b) 

Fig 3. Incorporating dynamically generated metadata into the 
workflow generation process: (a) marking a variable as a 
breakpoint, (b) a truncated workflow with all the nodes up to the 
breakpoint will be submitted for execution, when the breakpoint 
is reached then the workflow is sent back to the workflow 
generation algorithm and the dynamically generated metadata 
will be fetched. 

breakpoint that will be submitted for execution.  Note that the 
whole workflow is generated, but only the truncated workflow 
will be initially executed.  Once the breakpoint is reached, 
dynamically generated metadata for that variable’s data will 
be available as a .met file and used to (re-)generate the next 
truncated workflow up to the next set of breakpoints. 

IV. DYNAMIC WORKFLOW GENERATION BASED ON RESOURCE 
AVAILABILITY   

Another important capability that requires interleaving of 
workflow generation and execution is to allocate or deallocate 
resources dynamically.  A user may want to indicate that a 
resource has become unavailable for a particular worklow, or 
that a resource suddendly has become available.  This can be 
done during workflow generation or during workflow 
execution.  It causes the  system to reassign  resources  for 



!

Is available? 

 
Fig 4. Changing the availability of a hardware resource can be 
done by the user even during workflow execution, and as a result 
the system regenerates the workflow and reassigns resources. 

 
Fig 5. After resource selection, the user can see what are the 
possible execution resources for each component of the workflow. 

execution. Many workflow execution systems have the ability 
to handle these changes in resource availability during 
execution.  WINGS has a unique capability in being able to do 
this also during workflow generation. 

In addition, the system is able to give the user an idea of the 
feasibility of their workflow given the selected resources.  For 
example, one of the steps may require execution resourecs that 
are not available, and the system would let the user see that the 
workflow is unfeasible.   Users may generalize a step in the 
workflow to include an abstract component so that more 
executable components may be candidates for that workflow 
step.  This gives the user more flexibility in designing the 
workflow and managing resource allocation. 

Figure 4 shows the WINGS interface to accomplish this.  
Each execution resource is described in terms of its hardware 
capabilities as well as the software installed in it.  The user can 
indicate whether an execution resource is available or not.   

In order to support this capability, we extended WINGS 
with a Resource Catalog that contains all the information about 
resource capabilities as well as their availability. 

Figure 5 shows the interface to allow a user to see what 
resources have been assigned to a workflow.  The user can go 
back and change the availability of resources at any time. 

V. INTERLEAVING WORKFLOW GENERATION  AND EXECUTION 
This section describes the algorithms for interleaving 
workflow generation and execution used in WINGS.  The pure 
workflow generation algorithms are quite complex and 
described formally in [Gil et al 2011b].  We do not present 
them here for lack of space, but they provide context for the 
modifications to support interleaving with execution.  The 
algorithms are also complex because they handle the parallel 
processing of data collections and component collections 
described in compact form in the input workflow [Gil et al 
2009].  Workflows generated with WINGS can be executed in 
a variety of execution engines [Gil 2013a; Gil 2013b].   

A. Interleaving Workflow Generation, Resource Allocation, 
and Execution 

Table 1 shows a high-level description of the algorithm for 
interleaving workflow generation, resource allocation, and 
workflow execution.  

The algorithm starts with a seeded workflow consisting of 
a workflow template which may include abstract steps (e.g. a 
component class whose instances are executable components), 
data bindings for some or all of the input variables, and value 
bindings for some or all of the input parameters.   

A workflow generation step generates a set of expanded 
workflows from a given seeded workflow.  Expanded 
workflows have executable components for all the steps, 
bindings for all the input data variables, values for all the input 
parameters, and individual nodes to process each item in any 
collections in the workflow (data collections and component 
collections).  The algorithm creates new nodes for each dataset 
being processed in any data collections.  If a variable is 
marked as a breakpoint, then the algorithm checks if the 
workflow has been executed to that point and if so it retrieves 
the met file and merge it with the predictive metadata obtained 
from the Data Catalog.  If the workflow has not been executed 
to that breakpoint, then the algorithm marks  the  workflow  so 
the  execution  will stop at that breakpoint, and continues to 
expand the rest of the workflow but marking all the rest of the 
nodes as “inactive”.  This   forms a   truncated  workflow   to  
be   submitted   to execution.  As the workflow undergoes 
iterations of the workflow generation algorithm interleaved 
with execution, a new truncated workflow is generated as the 
breakpoints are reached. 

The next step is to select resources for each of the 
expanded workflows.  This is done based on the software and 
hardware requirements of the components and taking into 
account the execution resources available.  There may be 
many possibilities, and one may be selected by the user or by 
the system (for example based on minimizing execution time). 

Next, the selected workflow is executed.  Met files are 
dynamically generated as the workflow is executed.  If it is a 
truncated workflow, it will only proceed until the breakpoints.   

 



Table 1. Top-level algorithm for interleaving workflow 
generation and workflow execution. 

Algorithm: INTERLEAVED-WF-GENERATION+EXECUTION 
 

Input: seeded-workflow (workflow-template + input-data + input-parameters) 
Output: execution-outputs 
 

expanded-workflows ← WORKFLOW-GENERATION 
      (seeded-workflow) 
resourced-workflows ← {} 
for each expanded-workflow ∈ expanded-workflows 
 workflow ← SELECT-RESOURCES(expanded-workflows) 
 resourced-workflows ← resourced-workflows ∪ workflow  
resourced-workflow ← WF-SELECTION(resourced-workflows) 
 

execution-outputs ← WORKFLOW-EXECUTION-WINGS 
     (resourced-workflow) 
 

while resourced-workflow.is-incomplete do 
 expanded-workflows ← WORKFLOW-GENERATION 
       (seeded-workflow) 
 new-resourced-workflows ← {} 
 for each expanded-workflow ∈ expanded-workflows 
  workflow ← SELECT-RESOURCES(expanded-workflows) 
  new-resourced-workflows ← new-resourced-workflows ∪ workflow  
 new-resourced-workflow ← resourced-workflow  
 /* Select the first workflow that has more steps than current workflow */ 
 while num-steps(new-resourced-workflow) =  
   num-steps(resourced-workflow) 
  new-resourced-workflow ← dequeue(new-resourced-workflows) 
 if new-resourced-workflow = resourced-workflow then 
  mark-error(resourced-workflow) 
  break 
 end if 
 resourced-workflow = new-resourced-workflow 
 execution-outputs ← WORKFLOW-EXECUTION-DISTRIBUTED 
       (resourced-workflow) 
end while 
 

return execution-outputs 
 

The algorithm then iterates the workflow generation, 
resource selection, and workflow execution until there is an 
execution failure, there are no possible resources to assign to 
some workflow task, or there are no more nodes in the 
workflow to execute.  The algorithm also supports replanning 
in case a resource is no longer available, not just by 
reassigning resources but also by redesigning the workflow. 

B. Dynamic Generation of Metadata 
The workflow generation step is responsible for 

generating metadata as well as execution breakpoints.  This 
means taking a seeded workflow and setting up parameter 
values as well as handling the generation of multiple nodes for 
parallel processing of data collections.  The algorithm 
processes the input links of the initial bound workflow, and 
for each link it finds the port of the destination node that the 
link is connected to.  The node can have several binding rule 
expressions to handle and combine data collections, such as 
cross-product, n-ways, and n-shift. It also handles 
dimensionality of the collections, for example if a component 
merges a collection of collections (e.g., a 2-dimensional 
collection would have m items appearing n times).  The 
algorithm then creates as many nodes as needed to handle 
each item in the data collection.  The handling of collections is 
described in detail in [Gil et al 2009].  Next, the algorithm 

calls the Component Catalog to get constraints on each node, 
which include constraints that set the values of each 
parameter.   

At that point the algorithm can fetch the dynamically 
generated metadata for the input data of the workflow if it 
exists which would appear in the met file for that dataset, and 
merge that dynamically generated metadata with the predicted 
metadata.  The dynamically generated metadata supersedes the 
predicted metadata when they differ.  Next, the algorithm sets 
up whether node collections should be each processed in 
separate workflows (i.e., one workflow for each data item in 
the collection) or the same workflow depending on port 
binding rules (e.g., “Use all input data in the same 
workflow”).  As always, if the algorithm detects inconsistent 
constraints then no configured workflows are returned. 

VI. CONCLUSIONS 
This paper describes an approach for interleaving planning 

and execution, which supports the incremental submission of 
partial workflows for execution until completion. As new 
metadata is generated dynamically during execution for all new 
data products, the workflow system uses that dynamically 
generated metadata to support dynamic planning and 
replanning of the workflow. The approach is implemented and 
integrated with the WINGS workflow system. 

VII. ACKNOWLEDGMENTS 
We would like to thank Shannon McWeeney and Christina Zheng of Oregon 
Health and Sciences University for valuable discussions of requirements and 
metadata management that were very valuable for this work. 

REFERENCES 
[1] De Roure, D; Goble, C.; Stevens, R. “The design and realization of the 

myExperiment Virtual Research Environment for social sharing of 
workflows”. Future Generation Computer Systems, 25 (561-567), 2009.  

[2] Gil, Y. “Mapping Semantic Workflows to Alternative Workflow 
Execution Engines.” Proceedings of the Seventh IEEE International 
Conference on Semantic Computing (ICSC), Irvine, CA, 2013.  

[3] Gil, Y. “Towards Task-Centered Network Models through Semantic 
Workflows.” Proceedings of the IEEE Conference on Intelligence and 
Security Informatics (ISI), Seattle, WA, 2013. 

[4] Gil, Y. “Intelligent Workflow Systems and Provenance-Aware 
Software.” Proceedings of the Seventh International Congress on 
Environmental Modeling and Software, San Diego, CA, 2014. 

[5] Gil, Y.; Groth, P.; Ratnakar, V.; and Fritz, C. “Expressive Reusable 
Workflow Templates.“ Proceedings of the Fifth IEEE International 
Conference on e-Science (e-Science), Oxford, UK, 2009.  

[6] Gil, Y.; Ratnakar, V.; Kim, J.; González-Calero, P.; Groth, P.; Moody, 
J.; Deelman, E. “WINGS: intelligent workflow-based design of 
computational experiments.” IEEE Intelligent Systems 26 (1), 2011. 

[7] Gil, Y.; Gonzalez-Calero, P. A.; Kim, J.; Moody, J.; and Ratnakar, V. 
“A Semantic Framework for Automatic Generation of Computational 
Workflows Using Distributed Data and Component Catalogs.” Journal 
of Experimental and Theoretical Artificial Intelligence, 23(4), 2011. 

[8] Kozlovszky, M., Karoczkai, K., Marton, I., Balasko, A., Marosi, A., 
Kacsuk, P. “Enabling Generic Distributed Computing Infrastructure 
Compatibility for Workflow Management Systems.” Computer Science, 
13(3), 2012. 

[9] Taylor, I.,  Deelman, E., Gannon, D., and M. Shields (Eds), “Workflows 
for e-Science: Scientific Workflows for Grids,” Springer, 2007.  

[19] Zheng, C.L., Ratnakar, V., Gil, Y., and S. K. McWeeney.  
“Reproducibility or Bust: Semantic Workflows for Clinical Omics”. 
Genome Medicine, 7(73), 2015. 


